Minimax Regret Classifier for Imprecise Class Distributions
نویسندگان
چکیده
The design of a minimum risk classifier based on data usually stems from the stationarity assumption that the conditions during training and test are the same: the misclassification costs assumed during training must be in agreement with real costs, and the same statistical process must have generated both training and test data. Unfortunately, in real world applications, these assumptions may not hold. This paper deals with the problem of training a classifier when prior probabilities cannot be reliably induced from training data. Some strategies based on optimizing the worst possible case (conventional minimax) have been proposed previously in the literature, but they may achieve a robust classification at the expense of a severe performance degradation. In this paper we propose a minimax regret (minimax deviation) approach, that seeks to minimize the maximum deviation from the performance of the optimal risk classifier. A neural-based minimax regret classifier for general multi-class decision problems is presented. Experimental results show its robustness and the advantages in relation to other approaches.
منابع مشابه
Robustness in portfolio optimization based on minimax regret approach
Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...
متن کاملMinimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملFighting Bandits with a New Kind of Smoothness
We provide a new analysis framework for the adversarial multi-armed bandit problem. Using the notion of convex smoothing, we define a novel family of algorithms with minimax optimal regret guarantees. First, we show that regularization via the Tsallis entropy, which includes EXP3 as a special case, matches the O( √ NT ) minimax regret with a smaller constant factor. Second, we show that a wide ...
متن کاملMinimax Filtering via Relations between Information and Estimation
We investigate the problem of continuous-time causal estimation under a minimax criterion. Let X = {Xt, 0 ≤ t ≤ T} be governed by the probability law Pθ from a class of possible laws indexed by θ ∈ Λ, and Y T be the noise corrupted observations of X available to the estimator. We characterize the estimator minimizing the worst case regret, where regret is the difference between the causal estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 8 شماره
صفحات -
تاریخ انتشار 2007